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Abstract
While for a slightly supersaturated vapor the free energy barrier �F∗

hom, which needs to be
overcome in a homogeneous nucleation event, may be extremely large, nucleation is typically
much easier at the walls of the container in which the vapor is located. While no nucleation
barrier exists if the walls are wet, for incomplete wetting of the walls, described via a nonzero
contact angle �, classical theory predicts that nucleation happens through sphere-cap-shaped
droplets attracted to the wall, and their formation energy is �F∗

het = �F∗
hom f (�), with

f (�) = (1 − cos �)2(2 + cos �)/4. This prediction is tested through simulations for the
simple cubic lattice gas model with nearest-neighbor interactions. The attractive wall is
described in terms of a local ‘surface field’, leading to a critical wetting transition. The variation
of the contact angle with the strength of the surface field is determined by using thermodynamic
integration methods to obtain the wall free energies which enter Young’s equation. Obtaining
the chemical potential as a function of the density for a system with periodic boundary
conditions (and no walls), the droplet free energy of a spherical droplet in the bulk is obtained
for a wide range of droplet radii. Similarly, �F∗

het is obtained for a system with two parallel
walls. We find that the classical theory is fairly accurate if a line tension correction for the
contact angle is taken into account.

1. Introduction and overview

When one studies the condensation of a vapor induced by a
sudden change of external control parameters (e.g. pressure,
temperature), the walls of the container may have a pronounced
effect on the dynamics of the phase change of the considered
fluid. If conditions of ‘complete wetting’ [1–5] occur, the
condensation of the liquid can immediately take place by a
growth of the thickness of the liquid wetting layer that coats
the wall, and thus the supersaturation of the remaining vapor
is immediately removed. Only if the fluid particles are not
at all attracted to the walls, so that the latter clearly prefer
the vapor phase (‘complete drying’ of the wall [1–5]), can we
expect that condensation in the supersaturated vapor occurs by
‘homogeneous nucleation’ [6–18] in the bulk of the fluid, and
the effect of the walls is negligible. While the situation of
complete wetting corresponds to a Young [19] contact angle
� = 0, complete drying means θ = π . However, the most
interesting case occurs for the intermediate case of ‘incomplete

wetting’ (0 < � � π/2) or ‘incomplete drying’ (π/2 �
� < π ). One readily finds that a sphere-cap-shaped droplet
attached to the wall provides a substantial reduction of the free
energy barrier against nucleation, in comparison with the free
energy barrier �F∗

hom that needs to be overcome when in the
bulk of the fluid a spherical droplet (with critical droplet radius
R∗) is formed [20–22]. According to the classical theory of
homogeneous nucleation [12–18], for a weakly supersaturated
vapor the free energy cost of forming a liquid droplet can be
written as a sum of a volume term (∝ 4π R3/3) and a surface
term (∝ 4π R2)

�F(R) = −�μ(ρ� − ρv)

(
4π R3

3

)
+ γv�4π R2. (1)

�μ is the chemical potential difference relative to the
coexistence value �μ = μ − μcoex(T ), and ρ�, ρv are the
densities of the coexisting liquid (ρ�) and vapor (ρv) phases.
Here it was assumed that the supersaturation of the metastable
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vapor is small enough, so that the pressure difference between
the droplet and the surrounding vapor can be expanded linearly
in �μ. In the surface term, γv� denotes the surface tension of a
flat vapor–liquid interface, and hence is independent of both R
and �μ (‘capillarity approximation’). As it is well known, (1)
leads to a critical droplet radius R∗ (where ∂�F(R)/∂ R = 0)
and associated free energy barrier �F∗

hom

R∗ = 2γv�/[�μ(ρ� − ρv)],

�F∗
hom = 16π

3
{γ 3

v�/[�μ(ρ� − ρv)]2}.
(2)

Now we consider a system with walls where at coexistence
a macroscopically large liquid droplet is attached to the wall.
The droplet exhibits the contact angle �, which is related to
the wall–vapor (γwv) and wall–liquid (γw�) surface tensions by
Young’s equation [9]

γv� cos � = γwv − γw�. (3)

The extension of the classical theory ((1) and (2)) due to
Turnbull [20–22] yields a free energy barrier �F∗

het against
heterogeneous nucleation which is reduced in comparison with
�F∗

hom by a factor given solely by the contact angle, f (�),

�F∗
het = �F∗

hom f (�),

f (�) = (1 − cos �)2(2 + cos �)/4.
(4)

In addition to the assumptions made for the derivation of (2),
it is further assumed that the dependence of γwv, γw� on �μ

is negligible. Line tension [23–38] effects are disregarded too,
which lead to a correction to (3) as follows [34–36]

γv� cos � = γwv − γw� + τκ∗. (5)

Here, τ is the line tension and κ∗ is the geodesic curvature
of the contact line (which is a circle for a sphere-cap-shaped
droplet). We note, however, that for small droplets (where (5)
seems to make a substantial correction, as simulations of
sessile droplets have indicated [39]) one also expects a
curvature correction to γ�v [40], involving the ‘Tolman length’
δ,

γv�(R) = γv�/(1 + 2δ/R). (6)

However, the physical meaning and properties of this length
are still under discussion (see [41] and references therein).
Recent attempts to find γv�(R) from Monte Carlo simulations
of a Lennard-Jones fluid [42, 43] yielded a γ (R) inconsistent
with (6).

At this point, we emphasize that the experimental evidence
for the validity of (4) is scarce, if at all existent. As it is well
known, accurate measurements of nucleation rates J (which
are related to �F∗ via J = ν∗ exp(−�F∗/kBT ) where
the pre-exponential factor ν∗ incorporates all kinetic aspects
of droplet growth) are notoriously difficult [12, 17, 18, 44].
Critical droplets are nanoscopically small and very rare. Their
direct experimental observation is thus elusive. The rate of
nucleation can only be inferred indirectly from the stage where
the nuclei have grown to a much larger size, at which they
are observable, i.e., one can only study the combined effect

of nucleation and growth. It is often difficult to distinguish
between homogeneous and heterogeneous mechanisms (the
latter may be due to ions [45] and nanoscopically small dust
or aerosol particles [46] in the vapor, not only due to the
walls of the container). Quantitatively accurate measurements
of contact angles � of droplets at flat walls are also
difficult [1–3, 47–49], due to hysteresis between advancing
and receding contact angles caused by the substrate surface
roughness, contact line pinning at impurities, etc. Again,
the direct experimental observation of nanoscopically small
droplets at walls is a nontrivial task. As a result, comprehensive
experimental tests of (4) have, to our knowledge, not been
possible so far. One can even find in the literature the statement
that ‘the understanding of heterogeneous nucleation processes
is rather poor’ (e.g. [50], p 489). Studies of heterogeneous
nucleation by more refined theories such as density functional
theories (e.g. [51–55]) or computer simulations (e.g. [56–62])
are also scarce and do not give an exhaustive solution to the
problems discussed above. Nevertheless the few results that
do exist already indicate that line tension effects are very
important (e.g. [58, 59]). In the present work we make a
contribution to this problem of droplet formation at walls near
wetting transitions by a study of the Ising (lattice gas) model.
For the study of homogeneous nucleation in the bulk, the Ising
model has already played a key role [14, 15, 63–71]: due to
particle–hole symmetry, the chemical potential at coexistence
μcoex is exactly known, unlike off-lattice fluids where μcoex

is only known within some error. The ‘order parameter’
ρ� − ρv and interface free energy at coexistence γv� are also
known exactly in d = 2 dimensions [72] and numerically in
d = 3 dimensions with high precision [73–75]. In addition
wetting transitions of simple cubic Ising lattices with free
surfaces at which surface fields H1 act have been studied
extensively [5, 76–80]. Thus many ingredients that need to be
known for a study of droplet formation near wetting transitions
are indeed available for the present model. Note that Monte
Carlo codes for Ising systems also perform much faster [81]
than for off-lattice models. Thus the problem can be studied
with efficient use of computer resources. Figures 1, and 2 show
snapshot pictures of wall-attached droplets in the lattice gas
model, as they are generated and analyzed by our simulations.

In order to provide a stringent test of (4), we extend
a method [43, 64, 82–84] where γv�(R) is extracted from
a study of �μ(ρ) for different linear dimensions L of
the simulation box (applying periodic boundary conditions
throughout, in the study addressing homogeneous nucleation)
to the case of an L × L × D geometry where periodic boundary
conditions act only in x and y directions, while at the two
L × L surfaces (which are perpendicular to the z-direction)
surface fields H1 and −H1 act. As it will be described in
section 3, the analysis of the function �μ versus ρ does
contain the desired information on �F∗

het. Of course, as in
the bulk [43, 82, 83] one needs to avoid using simulation data
which are affected by the ‘droplet evaporation/condensation
transition’ [43, 82, 83, 85–87], which occurs when ρ is too
close to ρv . In addition, H1 and L have to be chosen such
that transitions where the droplet spreads into a precursor of a
wetting film are avoided. (Of course, H1 < H1w(T ) needs

2
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Figure 1. Typical configuration snapshots of systems at kBT/J = 3.0 in the regime where wall-attracted droplets exist in a box with
L = D = 40. Case (left) refers to H1/J = 0.4 (contact angle � ≈ 58◦) and case (right) to H1 = 0 (� = 90◦). Occupied lattice sites are
highlighted by dots. Lengths are measured in units of lattice spacings and contact angles refer to ‘macroscopic’ contact angles as derived
from (3).

Figure 2. Same as figure 1, but for an elongated geometry (L = 60, D = 20) and two different views of the same configuration. Systems
refer to H1 = 0 (� = 90◦) left part; H1/J = 0.5 (� ≈ 49◦), middle part; and H1/J = 0.7 (� ≈ 27◦), right part.

to be chosen, H1w(T ) denotes the surface field at which in
semi-infinite geometry a wetting transition occurs [5, 76–80]).
As it will be shown in section 3, accurate estimates of the
contact angle � as function of H1 can be easily obtained from
a thermodynamic integration method [88–90]. Section 4 then
presents our results for �F∗

hom(R∗) versus R∗, since previous
related work [64] suffers from insufficient statistical accuracy.
Section 5 presents the Monte Carlo test of (4), section 6
summarizes our conclusions.

2. Equilibrium of liquid droplets at walls in finite
volumes

2.1. Model and general phenomenological considerations

The physical situation which we address in this work is
sketched in figure 3(a): we consider a finite volume L × L ×
D, with periodic boundary conditions in x and y directions,
confined by two parallel perfectly flat walls of area L × L.

The wall at z = 0 favors the liquid (because of a suitably
chosen attractive potential between this wall and the fluid
particles) and the wall at z = D favors the vapor (because of
a suitably chosen repulsive potential between this wall and the
fluid particles). The attractive potential needs to be chosen such
that (for the considered temperature T less than the critical
temperature Tc of the vapor–liquid phase transition in the bulk)
the wall at z = 0 is incompletely wet (and similarly, the wall
at z = D should be incompletely dry).

We now assume that the total density ρ in this system is
inside the two-phase region of the bulk, ρv < ρ < ρ�. We
assert that for suitably chosen parameters (ρ, L, D, T and
wall potentials) the situation sketched in figure 3(a), where a
sphere-cap-shaped droplet covers a spherical surface πr 2 of
the substrate) represents a situation of stable equilibrium. The
equilibrium can be described by an extension of the lever rule,
provided r is of mesoscopic size (much larger than interparticle
distances in the fluid)

ρV = ρ ′
�Vdrop + (V − Vdrop)ρ

′
v. (7)

3
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Figure 3. (a) Schematic geometry of the system used to study stable
wall-attached droplets in thermal equilibrium. The finite L × L × D
simulation box has periodic boundary conditions (p.b.c.) in x and y
directions, and is confined by an attractive wall (favoring the liquid
phase) in the bottom plane (z = 0) and by a repulsive wall (favoring
the vapor) in the top plane (z = D). For suitable average densities
(ρ > ρv) the system is in a two-phase configuration, consisting of a
(weakly supersaturated) vapor of density ρ ′

v , with ρv < ρ ′
v < ρ, and

a sphere-cap-shaped sessile droplet at the lower wall. This droplet is
characterized by a height h and contact angle �, covering a circle of
radius r of the substrate. At the surface area πr 2 the surface tension
γw� and at the remaining substrate surface L2 − πr 2 the surface
tension γwv acts, while the surface tension γv� acts on the top surface
(of area π(r 2 + h2)) of the droplet. (b) Ising model representation of
the same geometry as in (a). Using the lattice spacing as a unit of
length, we work with D discrete lattice planes in the z-direction, and
surface fields act on the planes n = 1 (H1) and n = D (HD = −H1),
respectively.

For a sphere-cap-shaped droplet, the droplet volume Vdrop is

Vdrop = πh

6
(3r 2 + h2), (8)

where both radius r and height h can be related to the radius of
curvature R and contact angle � as

r = R sin �, h = R(1 − cos �). (9)

The total volume is V = L2 D, and the liquid and vapor
densities ρ ′

�, ρ
′
v in figure 3(a) will (for finite R) differ slightly

from the coexistence densities ρ�, ρv due to surface effects. Of
course, we do expect that in the limit where R → ∞ (implying
also L → ∞, D → ∞ together with R) that ρ ′

� → ρ� and
ρ ′

v → ρv , since boundary corrections cannot matter for infinite

volumes. The surface free energy of the droplet, relative to the
surface with no droplet, is

Fs = γv�π(r 2 + h2) + πr 2(γw� − γwv). (10)

Using Young’s equation, (3), and (10) can be rewritten as

Fs = γv�π[r 2(1 − cos �) + h2]
= γv�4π R2(1 − cos �)2(2 + cos �)/4 (11)

(for simplicity, line tension corrections are disregarded for the
moment).

The idea of the present work now is to study such
equilibria as schematically sketched in figure 3(a) by
simulation and obtain the total free energy of the system as
well as the free energy densities of the vapor and the liquid
separately. In this way, the actual effective surface free energy
contribution Fs(R,�) can be estimated, and the accuracy
of (11) for small droplets can be tested.

For simplicity, we continue the discussion not for the
general case of a vapor–liquid transition but specialize to the
case of an Ising (lattice gas) Hamiltonian, cf figure 3(b).

H = −J
∑
〈i, j〉

Si S j − H
∑

i

Si

− H1

∑
i∈n=1

Si − HD

∑
i∈n=D

Si . (12)

The lattice sites (i) carry Ising spins Si = ±1, J is the
exchange constant (J ≡ 1 for simplicity) and the first sum
goes over all nearest-neighbor pairs of the finite lattice once.
(Note that unlike [76–80, 90] we do not consider the case
of interactions Js = J in the surface planes n = 1 and
n = D, respectively). In the surface planes, each spin has a
‘missing neighbor’ (since there are no planes n = 0 and n =
D + 1, respectively) but also couples to a ‘surface magnetic
field’ [76–80, 90, 91] H1 or HD = −H1, respectively, while all
spins couple to the uniform magnetic field H . The connection
to the liquid–gas transition discussed so far is made by the
standard interpretation of (12) as a lattice gas problem, of
course, where Si translates to a local density ρi via

ρi = (1 + Si )/2, 2H = μ − μcoex,

ρ = (1 + 〈Si 〉T )/2.
(13)

The coexisting densities in the bulk simply correspond to

ρv = (1 − mcoex)/2, ρ� = (1 + mcoex)/2, (14)

mcoex being the absolute value of the spontaneous magnetiza-
tion (H = 0, states with m ≡ 〈Si 〉T = mcoex and m = −mcoex

can exist). In the following, we shall use the ‘magnetic termi-
nology’ of the Ising model throughout, because it makes the
particle–hole symmetry of the lattice gas most transparent.

Figure 4 gives a schematic sketch of the states expected
for our system (when L and D are large enough, so that
assumptions such as (7) make sense). The lower part shows
the thermodynamic potential per spin, g(m), versus m, while
the upper part shows the field H (m) versus m. Of course, we
have the thermodynamic relation

H (m) = (∂g(m)/∂m)T . (15)

4
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Figure 4. Schematic sketch of an isotherm H versus m (upper part) and associated free energy density per spin g(m) plotted versus m (lower
part), for the system of figure 3(b), at a temperature T < Tc and a surface field strength in the incomplete wetting regime {H1 < H1w(T )}.
The distinct branches separated by transitions (full dots) correspond to the different states of the thin film indicated in the figure: in the regime
−mcoex < m < −mt supersaturated vapor occurs, for −m t < m < −m ′

t coexistence between a sphere-cap-shaped droplet plus (slightly
supersaturated) vapor occurs, for −m ′

t < m < −m ′′
t coexistence between a cylinder-cap-shaped droplet plus vapor occurs, while for

−m ′′
t < m < m ′′

t a liquid slab occurs, separated from vapor by flat interfaces which are inclined according to the contact angle (�). For
positive m the roles of vapor and liquid are reversed. Due to the choice HD = −H1 the isotherm is strictly antisymmetric around the point
m = 0, H = 0 and g(m) satisfies the symmetry relation g(−m) = g(m). Arrows indicate the orientation of the magnetization in the
corresponding Ising spin representation. The dotted horizontal straight line in the upper part indicates that for H > 0 three states can occur for
the same field, indicated by open circles: a state with magnetization m ′ with −mcoex < m ′ < −mt , corresponding to the vapor density ρ ′

v in
figure 3(a); a state with magnetization m with −m t < m < −m ′

t, corresponding to the coexistence of this weakly supersaturated vapor with a
liquid droplet; and a bulk liquid phase (magnetization m ′′ > mcoex, corresponding to the liquid density ρ ′

� in figure 3(a)). Note also that g(m)
is measured relative to the thermodynamic potential at coexistence, so g(mcoex) = 0.

Figure 4 suggests that one can distinguish several regions of
m, with well-defined separate physical states in these regions,
separated by sharp phase transitions. Of course, these sharp
phase transitions only exist in an asymptotic sense when L
and D both tend to infinity. However this limit is very subtle,
since then m t → mcoex [43, 82, 83, 85, 86], and (noting the
normalization g(mcoex) = 0 for the thermodynamic potential
per spin) g(m) = 0, for −mcoex � m � +mcoex (while in this
regime the total thermodynamic potential G(m) = L2 Dg(m)

still tends to infinity, it diverges weaker than proportional to
the volume!). For finite L and D, the transitions at ±m t, ±m ′

t

and ±m ′
t are not sharp, but rather exhibit finite size roundings.

In [86], it was suggested that this finite size rounding can be
described by the ‘double Gaussian approximation’ and ‘equal
weight rule’, similarly as it applies for first-order transitions in
the bulk [92, 93]. Here the details of this rounding are not
considered. The linear variation of H versus m drawn for
−mcoex < m < −m t and for m t < m simply corresponds
to the linear expansion at coexistence

m − mcoex = χcoex H, near m = mcoex, and

m + mcoex = χcoex H, near m = −mcoex

(16)

χcoex being the Ising model susceptibility at coexistence.
Equation (16) implies a simple quadratic variation of g(m) in

this regime,

g(m) = 1
2χ

−1
coex(m − mcoex)

2 and

g(m) = 1
2χ

−1
coex(m + mcoex)

2.
(17)

The first of these equations applies near m = +mcoex and the
second near m = −mcoex, of course.

A key observation suggested by figure 4 is the possibility
that for the same value H of the field three states are possible:
a state with (negative) magnetization m ′, corresponding to the
slightly supersaturated vapor of density ρ ′

v (figure 3(a)); a state
with (positive) magnetization m ′, corresponding to liquid with
density ρ ′

�; and a mixed-phase state, at magnetization m (with
−m t < m < −m ′

t), which is a superposition of these two
states, a liquid droplet (with density ρ ′

� inside the droplet) and
vapor (of density ρ ′

v) outside of the droplet. Of course, these
considerations assume that the droplet shown in figures 3(a)
and 4 is of mesoscopic size: it must be possible to distinguish
the ‘bulk’ region of the droplet from its interfacial region. In
figure 4, we have not considered the problem that the interface
between liquid and gas has a finite thickness, but this problem
is irrelevant in this context: one can define the division between
liquid and vapor such that there is neither an excess volume
Vint nor an excess particle number Nint associated with the
interface:

V = Vv + V�, N = Nv + N�, Vint = 0,

Nint = 0,
(18)

5
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Figure 5. Plot of H versus m (a) and g(m) (b). The chosen
temperature is kBT/J = 3.0, L = D = 20, and two choices of H1/J
are included, as shown. For comparison, the corresponding bulk data
(no surfaces, fully periodic boundary conditions) are included, too.

where Vv, V� are the volumes taken by vapor and liquid, and
Nv, N� the respective particle numbers (which are related to
the corresponding magnetization, using (13) of course). In
fact, (18) has already been anticipated by (7). Figure 5 gives
an example to show that the isotherms actually observed in the
simulation do have the general features postulated in figure 4.

The situation is more subtle when we consider the
thermodynamic potential of inhomogeneous states, because
then the surface free energy contributions must be considered
properly. Equation (17), of course, only describes the bulk part,
but does not include a contribution due to the walls in figures 3
and 4 yet. So the actual thermodynamic potential (per lattice
site) is, in the state describing the slightly supersaturated vapor,

gsv(m) = 1
2χ−1

coex(m + mcoex)
2 + (γvw + γ�w)/D (19)

where the dependence of both γvw, γv� on H has been
neglected. Hence the wall–vapor and wall–liquid surface free
energies at bulk phase coexistence are used, as well as the
symmetry relation which then holds

γvw(H1) = γ�w(−H1) (20)

since the invariance of the Hamiltonian (12), against the
transformation

{Si }, H, H1 → {−Si },−H,−H1 (21)

implies for the surface correction to the thermodynamic
potential the symmetry gs(m, H1) = gs(−m,−H1), which
is (20).

For the potential of the state containing the sphere-cap-
shaped drop in equilibrium with surrounding supersaturated
vapor the ansatz replacing (19) then is

gdrop(m) = 1
2χ

−1
coex(m

′ + mcoex)
2

+ (γvw + γ�w)/D + 4π R2γ (R,�)

L2 D
. (22)

Note that the first term on the right-hand side of this equation
does not involve m but rather m ′, corresponding to ρ ′

v , the
density that is in equilibrium with a droplet which has the
radius of curvature R (figure 3(a)). The last term on the
right-hand side represents the surface excess free energy of
the sphere-cap-shaped droplet which has a contact angle �.
According to the classical theory of heterogeneous nucleation,

γ (R,�) = γ�v f (�), (23)

with f (�) being given by (4). Clearly we need not make
this assumption in (22), and hence allowing for a completely
general γ (R,�) one can put (23) to a crucial test. When ρ ′

v

(and hence m ′) is chosen, the value of R of the sphere cap
in equilibrium with its surrounding is also fixed. Varying L
and D one can clearly separate the last term on the right-hand
side of (22), when gdrop(m) is computed from the simulations.
Using (7) and (9) (and hence R, given the knowledge of the
contact angle �) the droplet volume can be directly computed
as well. There is no need to geometrically identify the spins
belonging to the droplet.

We also note that the fact that the density ρ ′
v

(magnetization m ′) in figures 3, and 4 of the vapor coexisting
with the droplet is identical to the state with the same value
of H and no droplet, is fully consistent with the principle
that in equilibrium subsystems are additive. E.g., in figure 3
we can divide the considered system up in a subsystem with
L ′ < L (but the same D) still containing the droplet, and
the remaining volume which contains only the supersaturated
vapor (at density ρ ′

v) but no droplet. In the smaller subsystem,
L

′2 D < L2 D, hence the contribution of the droplet to gdrop

in (22) is relatively larger. We can consider a subsystem of
total lateral linear dimension L ′ (connected at this distance
with a periodic boundary condition) and should obtain identical
results for fs(R,�), as long as the interaction of the droplet
with its periodic images remains negligible, and as long as all
considered systems stay off from the transitions occurring at
m = −m t and m = −m ′

t, respectively.

2.2. The droplet evaporation–condensation transition

While the transition at m = −m ′
t from sphere-cap-shaped

to cylinder-cap-shaped droplets can be found from simple
geometrical considerations (using that for large L and D ρ ′

�

6
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tends to ρ� and ρ ′
v tends to ρv , (7) simply requires that at m ′

t
the volume of the sphere cap and the volume of the cylinder
cap are equal), the droplet evaporation/condensation transition
at m = −m t is more subtle [43, 82, 83, 85, 86]. Since this
transition strongly constrains the applicability of our method
(in a simulation run it must be ensured that fluctuations where
the droplet evaporates and the system jumps to the upper
branch of the H versus m curve in figure 4 make negligible
contributions to all averages that are taken), it is of interest
to discuss this transition more closely. We follow here the
treatment given in [86] for the bulk case.

Since we are interested in the asymptotic behavior for
large L, D and R, we may insert (23) in (22) and also use (2)
for the relation between R and H , i.e.

R = γv�/(mcoex H ). (24)

The transition point at m = −m t is located from the condition
gsv(−m t) = gdrop(−m t), cf figure 4, which yields

1
2χ

−1
coex(mcoex − m t)

2 = 1
2χ

−1
coex(mcoex − m ′)2

+ 4πγv� f (�)

L2 D
R2. (25)

Note that at m = −m t the field H is discontinuous. We
expect a jump from H = Ht,1 in the supersaturated phase with
no droplet down to H = Ht,2 in the state where the droplet
coexists with the surrounding vapor. It is convenient to use
Ht,2 as the variable in which all quantities are expressed, since
at the transition R = γ�v/(mcoex Ht,2) and hence (25) becomes

1
2χ−1

coex(mcoex − m t)
2 = 1

2χcoex H 2
t,2 + 4πγ 3

�v f (�)

m2
coex H 2

t,2

1

L2 D
. (26)

A second equation for m t follows from (7)–(9) and (14),
namely

−m = −m ′ + (m ′′ + m ′)
4π R3 f (�)

3L2 D
, (27)

where we have used the fact that with the help of (9) the
volume of the sphere-cap-shaped drop (8) can be written as
Vdrop = 4π

3 R3 f (�), f (�) being the function already quoted
in (4). Note that due to (16) we can use m ′′ + m ′ = 2mcoex.
Hence, at the transition (27) becomes, adding mcoex at both
sides of (27) and using (16)

mcoex − m t = χcoex Ht,2 + 2mcoex
4π

3

γ 3
�v f (�)

m3
coex H 3

t,2

1

L2 D
. (28)

Using (28) in (26) yields a simple algebraic equation for
Ht,2, which readily is solved as

H 4
t,2 = 8π

3

γ 3
�v f (�)

m2
coexχcoex

1

L2 D
. (29)

This result constitutes a natural generalization of the
corresponding result of [86] for the evaporation–condensation
transition in a homogeneous system (which is recovered
from (29) if we take D = L and f (�) = 1). From Ht,2

one finds the corresponding magnetization m ′, m ′ = −mcoex +
χcoex Ht,2, and from (28) one finds m t, which yields

mcoex − m t = 2χcoex Ht,2 = 2(mcoex − m ′). (30)

Since for the branch of H (m) without droplet (16) holds
up to the transition point, i.e. mcoex − m t = χcoex Ht,1, we
immediately conclude that Ht,1 = 2Ht,2.

Equations (29) and (30) imply that for constant aspect
ratio L/D the same scaling of the critical fields Ht,1, Ht,2 and
the distance of the transition from the coexistence curve as in
the bulk occurs, namely,

Ht,1 = 2Ht,2 = (mcoex − m t)/(2χcoex) ∝ L−3/4. (31)

However, care is necessary in the use of (29) when � is small,
since then f (�) ≈ �4/8 and then (29) shows that Ht,2 ∝
�. Clearly, the treatment makes only sense if L satisfies the
inequality

L � 2r = 2R sin � = 2γ�v�/(mcoex H ) (32)

which can be rearranged in this limit to give

L2/D � 48

π
γ�vχcoex/m2

coex. (33)

As discussed in [86], near the critical point the combination of
quantities appearing on the right-hand side of (33) is related to
the correlation length,

γ�vχcoex/m2
coex = cξcoex, c ≈ 0.439. (34)

For our treatment to be meaningful, we hence have to require
that

D � ξcoex, L � ξcoex, and

L2/D � ξcoex.
(35)

3. Estimation of the contact angle in Ising models

When we consider an Ising magnet in a geometry of a very
thick film, (D → ∞), the total free energy per spin can be
separated into the bulk free energy fb(T, H ) and contributions
from the two surfaces [91]

f (T, H, H1, HD, D) = fb(T, H ) + 1

D
fs(T, H, H1)

+ 1

D
fs(T, H, HD), D → ∞. (36)

Here, we consider the thermodynamic limit L → ∞ for
the parallel linear dimension. The choice of very large D
renders the two surfaces as noninteracting. Just as in the
bulk we have the relation for the bulk magnetization mb =
−(∂ fb(T, H )/∂ H )T , we find the surface layer magnetizations
m1, m D [91]

m1 = −(∂ fs(T, H, H1)/∂ H1)T ,

m D = −(∂ fs(T, H, HD)/∂ HD)T .
(37)

As is well known, wetting transitions can only occur at
bulk phase coexistence [1–5], i.e. H = 0 in the Ising model,
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but care is necessary to distinguish the sign of the spontaneous
magnetization. So we denote by f (+)

s (T, 0, H1) the limit
which results when in (36) the limit H → 0+ is taken,
i.e. a system with a positive spontaneous magnetization, and
by f (−)

s (T, 0, H1) the corresponding result for a system with
a negative spontaneous magnetization. In the wet phase of
the Ising model, we have a (mesoscopically thick) domain of
magnetization adjacent to the surface at n = 1, separated by an
interface from the domain with the bulk magnetization which
take the bulk of the film. Consequently, the surface excess free
energy of a wet surface is

f wet
s (T, 0, H1) = f (−)

s (T, 0, H1) + γv�(T ), (38)

while for the non-wet surface it is f nonwet
s (T, 0, H1) =

f (+)
s (T, 0, H1), in the case where the bulk spontaneous

magnetization is positive. The wetting transition occurs when
f wet
s (T, 0, H1) = f nonwet

s (T, 0, H1), i.e.

γv�(T ) = f (+)
s (T, 0, H1) − f (−)

s (T, 0, H1). (39)

In the non-wet situation, Young’s equation for the contact angle
simply becomes

γv�(T ) cos � = f (+)
s (T, 0, H1) − f (−)

s (T, 0, H1), (40)

consistent with the fact that � → 0 signifies the wetting
transition [1–5]. Now it is convenient to make use of the
symmetry already noted in (20) and (21) which in the present
notation reads

f (−)
s (T, 0, H1) = f (+)

s (T, 0,−H1), (41)

and which implies that for H1 = 0 the contact angle must be
90◦. Making use of (41) we can rewrite (40) as

cos � = [ f (+)
s (T, 0, H1) − f (+)

s (T, 0, HD)]/γv�(T ) (42)

where we have also used the choice HD = −H1. This
result suggests to compute the contact angle via a simple
thermodynamic integration method,

cos � = [γv�(T )]−1
∫ H1

0
(m D − m1) dH ′

1, (43)

utilizing (37). Thus, one performs a calculation where the
surface fields H ′

1 < 0, H ′
D = −H ′

1 > 0 are varied for a
film with positive magnetization. (By symmetry, one could
use a film with negative magnetization as well, then H ′

1 > 0,
H ′

D = −H ′
1 < 0 is chosen). The interfacial free energy γv�(T )

can be taken from the results of Hasenbusch and Pinn [74, 75],
for instance.

Figure 6 shows the resulting variation of � with H1,
using (43) for two system sizes at kBT/J = 3.0, namely
a system where L = D = 40 and a second system with
L = 100, D = 60. The (second-order) wetting transition for
this system has been previously estimated to occur at [76, 77]
H1w(T )/J = 0.83 ± 0.01, and the variation of � seen in
figure 6 is indeed compatible with this estimate. Of course, the
purpose of the present work is not to study critical wetting in
the Ising model more closely, which would require an extensive

Figure 6. Contact angle � plotted versus H1/J . Full curve is
obtained for a system with L = 100, D = 60, and broken curve for a
L = D = 40 system. The symbols result from a direct observation
of wall-attached droplets, as described in the text, using the droplet
gyration radius (crosses). All data refer to kBT/J = 3.0.

analysis of finite size effects near the wetting transition, but
rather to obtain � as a function of H1 over a reasonably wide
range in the non-wet regime.

It is interesting to test to what extent the ‘macroscopic’
contact angle, as estimated from the Young equation (42)
agrees with the ‘microscopic‘contact angle extracted from the
direct observation of small droplets, as shown in figure 1. As
is well known, accurate estimation of contact angles is difficult
for both lattice and continuous models. One possibility would
be to obtain the density profile of the droplet by averaging
over many droplet configurations. However, extracting the
contact angle is somewhat ambiguous-the droplet interface is
curved for a small droplet, and due to its intrinsic width and
its distortion near the wall such estimates are only possible
within large error bars [39], and sometimes only qualitative
statements are possible [94]. Therefore, we have tried an
alternative method: when one assumes a sphere cap shape of
the droplet, the contact angle can be written in terms of the
parallel (〈R2

g,xy 〉) and perpendicular (〈R2
g,z〉) components of

the gyration radius as cos � = (〈R2
g,xy 〉 − 6〈R2

g,z〉)/(〈R2
g,xy 〉 +

2〈R2
g,z〉) These estimates are included in figure 6. However, it

is likely that the strong fluctuations in droplet shape occurring
for small droplets also imply a systematic error of these
estimates.

4. Estimation of the surface free energies of droplets
in bulk vapor

As discussed in introduction (section 1), for a test of the
predicted formula (4) for the reduction of the free energy
barrier at a wall, the knowledge of the barrier �F∗

hom against
homogeneous nucleation in the bulk vapor is needed. Since (2)
implies �F∗

hom = 4π
3 R∗2

γv� = 1
3 Fs(R∗), we need to record

the surface free energy Fs(R) = 4π R2γv�(R) of droplets in
bulk vapor as a function of the droplet size. Unlike (2), we do
not insist on the validity of the capillarity approximation here,

8
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Figure 7. Chemical potential difference μ − μcoex plotted versus ρ at
kBT/J = 3.0, for the three-dimensional lattice gas model in the
bulk. Cubic L × L × L simulation boxes with periodic boundary
conditions are used, for a broad range of L , as indicated.

but allow for a more general form of a vapor–liquid interfacial
tension γv�(R) that may depend on the droplet radius R, as
done in [43] for a Lennard-Jones fluid. In principle, our
approach may allow another test of (6).

The method to obtain Fs(R) is the same as described in
section 2.1: the only change is that the terms (γvw + γ�w)/D
in (19) and (22) need to be omitted, and � = π throughout
(as in the case for a system with walls in the complete drying
regime, where a droplet formed in the vapor does not want to
touch the walls).

Figure 7 shows the ‘raw data’ of our study, namely a
plot of μ − μcoex versus the density ρ, for L × L × L
systems with periodic boundary conditions, for a broad range
of linear dimensions L, as indicated. For obtaining the
chemical potential of the lattice gas as a function of density,
an adaptation of the Widom particle insertion method [95, 96]
to the lattice model proved to be convenient.

H = kBT

2
ln

2

V − M − 2

∑
M−

exp(−β�EM+2). (44)

Here, �EM+2 is the energy to flip a spin from the
magnetization M to M + 2.

∑
M− is the sum over all lattice

positions with Si = −1 and V = L × L × D the number of
spins in the system. This equation is in principle only valid in a
region of constant density. If one is interested in a system with
varying density, one has to restrict the measurement to regions
of constant density except for systems in equilibrium where
one can average over the whole system. For Lennard-Jones
systems the chemical potential is typically separated into two
parts: the ideal gas term and the excess term. Analogously we
can write

H = kBT

2
ln

(
2V

V − M − 2

)

+ kBT

2
ln

(
1

V

∑
M−

exp(−β�EM+2)

)

= Hid + Hexc. (45)

Figure 8. Chemical potential as a function of distance from the
attractive wall. At z = 0 a droplet is located at the wall. The
configuration shown is from a system with L = D = 30,
H1/J = 0.4, and ρ = 0.06 at temperature kBT/J = 3.0.

In figure 8 we plot both terms as a function of distance
from the attractive wall. Note that even though a droplet is
present the total chemical potential is constant as expected
from equilibrium considerations. More details can be found
in [97]. The data in figure 7 are compatible with the earlier
results found in [64], but the latter data are considerably
less precise, as expected. Very similar to the corresponding
data for Lennard-Jones fluids [43, 83], one can distinguish
three regimes: for ρ near ρv (remember that μ = μcoex

at ρv), this size dependence of the isotherms is negligibly
small. The anomaly that exists in the regime 0.04 <

ρ < 0.09 (for the choices of L shown in figure 7) is a
remnant of the droplet evaporation/condensation transition,
rounded by finite size: rather than finding a sharp kink with
a vertical part of the isotherm, we find a smooth curve with
a rounded maximum. The position of this maximum shifts
to smaller density as L increases, and at the same time, it
becomes sharper. Qualitatively, these findings agree with the
considerations about the finite size rounding of the droplet
evaporation/condensation transition presented in [86]. We do
not attempt to analyze this behavior further. For such a study
considerably larger values of L would be required, as it was
found for the Lennard-Jones fluids [43, 83]. In any case, the
behavior seen in figure 7 is strikingly similar to corresponding
data [43, 83, 84] for Lennard-Jones fluids, strengthening our
belief that the present work is not suffering severely from any
possible lattice artifacts. A notable feature of the isotherms
in figure 7 is their pronounced curvature in the regime of the
vapor without droplet, unlike the strictly linear variation which
was drawn in figure 4 for simplicity. This also means that the
linear variation of the bulk grand-canonical potential per unit
volume, used in (1)

�p = p′
� − p′

v

= p� + ρ�(μ − μcoex) − pv − ρv(μ − μcoex)

= �μ(ρ� − ρv) (46)

9
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does not hold yet for the parameters chosen for our numerical
work. However, since the more general form of (1) and (2) is

R∗ = 2γv�/[�p],

�F∗
hom = 16π

3
[γ 3

v�/(�p)2] = 4π

3
R∗2

γv�,
(47)

the result that �F∗
hom = (1/3)Fs(R∗) holds irrespective of

whether the linear expansion around the coexistence curve is
an accurate approximation to the actual isotherms in the vapor
region or not.

The data for the isotherms μ−μcoex versus ρ, in the regime
of densities where we always have coexistence of a droplet
with surrounding vapor (without being affected by the droplet
evaporation/condensation transition for too small ρ, and the
droplet/cylinder transition for too large ρ) yield information on
the droplet surface free energy, Fs(R) = 4π R2γ (R), cf (22).
Here, the thermodynamic potential gdrop(m) is found from
thermodynamic integration, using (13)–(15)

g(m) =
∫ m

−mcoex

dm̃ H (m̃), (48)

and (48) is also used to estimate gsv(m ′), rather than using the
quadratic approximation in (19), since the latter is equivalent
to the linear variation of (16), and we know already that the
latter is inaccurate in the regime of interest, as noted above.
From (22), we hence conclude (in our case D = L, no free
surface effects and no contact angle enters)

Fs(R) = L3[gdrop(m) − gsv(m
′)]. (49)

At a given value of H = (μ − μcoex)/2 in the suitable regime,
we can read off both m and m ′ (and also m ′′, from the part of
the isotherm near m = +mcoex, not shown here). The radius R
belonging to this value is then inferred from (27) which reduces
in the bulk case to

m ′ − m = (m ′′ + m ′)(4π/3)(R/L)3. (50)

Thus, an explicit observation of the droplet in particular spin
configurations is not required. Problems related to the precise
identification which up-spins should be counted as part of the
droplet [98] hence do not even arise. We note, that ‘physical
droplets’ [98] in the Ising model should not (at least for
temperatures near the bulk critical point) be defined as clusters
of up-spins connected by nearest-neighbor bonds. Rather one
should use the ‘Swendsen–Wang’ [99] clusters, where bonds
between parallel spins are only placed with a probability P =
1 − exp(−J/kBT ) to define connectivity of spins belonging to
a cluster. However, we here disregard this problem, leaving an
analysis of nucleation close to criticality to later work.

An important aspect of (49) and (50) is that the same R
and associated free energy Fs(R) can be obtained for different
choices of L. This fact can be used as a stringent test of the self-
consistency of our procedure. Indeed, the pieces of the curves
for Fs(R) versus R extracted from the different box linear
dimensions L in figure 10 superimpose precisely, compellingly
proving the accuracy of our data.

It is also interesting to compare our findings for Fs(R)

to the prediction of the capillarity approximation, Fs(R) =
4π R2γv�, using the estimates [74, 75]

γv�/(kBT ) = 0.434(1) (kBT/J = 3.0),

γv�/(kBT ) = 0.0981(1) (kBT/J = 4.0).
(51)

One can see from figure 10 that in the region where 100 <

Fs(R)/kBT < 600 the relative deviations between the
capillarity approximation are relatively small, at least for
kBT/J = 3. For kBT/J = 4 there seems to be an
almost constant offset. Only for Fs(R) smaller than 100 kBT
significant deviations gradually become important. Note that
the theory outlined in section 2 loses its validity when R
becomes too small (in this case L also needs to be small,
to avoid problems with the droplet evaporation/condensation
transition, and then the droplet in the simulation box is affected
by interaction with its own periodic images). Such finite
size effects are not a physically important limitation of our
study. For free energy barriers �F∗

hom ≈ (5 − 20)kBT one
needs to describe nucleation as a kinetic process. Prefactors
in the nucleation rate become important, and nucleation events
can no longer be considered to be independent of each other:
The growing droplet creates a depletion zone around itself
interacting with the depletion zones of other droplets, and
one observes a gradual transition from nucleation to spinodal
decomposition [14, 15].

5. Monte Carlo results for the surface free energies of
wall-attached droplets

As a first test of our concepts outlined in section 2.1, we
show for a small system (L = 20, D = 20, H1 = 0)
a measurement of the isotherm for the chemical potential
and the corresponding potential g(m), figure 5. Apart from
finite size roundings, one can see all the features of the
theoretical curves shown in figure 4. Figure 9(a) now shows
data analogous to those shown in figure 7, but now in presence
of walls (still using H1 = 0). When we compare these
data to the corresponding results from the bulk (figure 7), we
see a qualitatively very similar behavior, with one important
exception: there is now a distinct dependence of the branch
corresponding to the vapor without droplet on the system
size. A closer examination shows, that μ − μcoex in this
regime depends strongly on D (as expected, due to the term
(γvw + γ�w)/D in g(m), cf (19) and (22)) but not on L, as
it should be. In ‘magnetic notation’, cf (36), we note that
the magnetization of the system contains corrections which are
called the ‘surface excess magnetization’ [91],

m = −(∂ f/∂ H )T,H1,HD (52)

= mb + 1

D
ms(T, H, H1) + 1

D
ms(T, H, HD)

and these surface excess magnetizations ms are picked up in
the curves μ − μcoex versus ρ. It is also interesting to take a
direct look at typical configuration snapshots corresponding to
these states (figures 1 and 2). These snapshot pictures already
indicate that one must also pay careful attention to finite size
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Figure 9. Plot of μ − μcoex versus ρ for kBT/J = 3.0 and H1 = 0 for three different lattice sizes (a) and for a system of size 40 ×40 × 40
where H1 is varied. (b) Part (c) shows data for kBT/J = 4.0 and systems 60 × 60 × D for various D, choosing H1 = 0.0. (d) shows systems
with L × L × 40 and varying L for kBT/J = 3.0 and H1 = 0.0.

effects associated with the lateral linear dimension L of the
box due to the proximity of the second-order wetting transition
when � is small: the system may undergo fluctuations into
states which are the dominating equilibrium configurations
for H1 > H1w(T ). For small �, in the regime where for
H1 < H1w(T ) one expects to observe a droplet, rather a state
is observed where this droplet has spread out into a precursor
of a wetting layer. Thus we have disregarded data for L = 20
throughout and used data for L = 30 only for H1/J � 0.4. For
H1/J � 0.6, also L = 40 was too small, and L = 60 or 80
had to be used. These configurations were used to determine
the gyration radius of the droplets from which another estimate
for � can be extracted, see [100]. As expected, such estimates
of � from the direct observation of rather small droplets are
less reliable.

Using data such as shown in figure 9, we can conclude
that the excess m ′ − m for two states with the same field H
at the ascending branch (m ′) and descending branch (m) of
an isotherm, away from the droplet evaporation–condensation
transition and from the sphere-cap–cylinder-cap transition,
differ just by the excess order parameter due to the (sphere-cap-
shaped) droplet, m ′ − m = (m ′′ + m ′)Vdrop/(L2 D), analogous
to (50) for the bulk case. Using Vdrop = (4π R3/3) f (�), we

relate m ′−m to the droplet radius of curvature, assuming again
a sphere cap shape of the droplet (and using the appropriate
contact angle from figure 6). The associated differences in the
thermodynamic potential yield the droplet surface free energy
Fs(R,�) = L2 D[gdrop(m)− g(m ′)], in analogy to (49). Since
this method ignores a possible systematic error, if the contact
angle � differs from its ‘macroscopic’ value (figure 6) because
of a line tension effect, we have also used an alternative
method, where R was taken from the corresponding bulk
measurement at the same value of H (note that there is a
unique relation between R and H , beyond the validity of the
classical nucleation theory). From this estimate for R and the
estimate for Vdrop one obtains an alternative estimate for �

(which differs from the estimate from figure 6 only slightly).
Consequently, slightly different estimates for Fs(R,�) result.
Since the statistical errors for this method seem to be somewhat
larger, the resulting estimates were not shown here.

Figure 11 now presents the central results of our paper, the
surface free energy of the droplets Fs(R, H1) plotted versus the
droplet radius R (using the data in figure 6 where � is given as
a function of H1, Fs(R, H1) is readily converted into Fs(R,�),
of course). One can see, that the walls indeed cause a dramatic
reduction of the free energy barrier, qualitatively as expected
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Figure 10. Surface free energy Fs(R)/(kBT ) plotted versus droplet
radius R, extracted from the data as shown in figure 7 by the method
explained in section 2.1. Two temperatures are shown, kBT/J = 3.0
(a) and kBT/J = 4.0 (b). Broken curves show the prediction of the
capillarity approximation, Fs(R) = 4π R2γv�, where γv� is the
interface tensions of flat interfaces (51). The straight lines (b) show
the ranges of the different linear dimensions L of the L × L × L
systems used. Inset in part (a) shows that the relative deviation from
the classical capillarity approximation increases strongly with
decreasing R.

from (4). In order to test this prediction, (4), quantitatively, we
have used the theoretical factor f (�) in (4), to construct the
function

Fs(R,�) = Fs(R) f (�) (53)

where Fs(R) is the surface energy of droplets in the bulk
(i.e., the simulation result obtained for periodic boundary
conditions). One sees that (49) can indeed explain the
simulation results almost quantitatively. There is, however, a
systematic offset (of the order of 10–20 kBT ) which depends
on the droplet radius (figure 12). It is tempting to attribute this
deviation to a line tension effect (figure 13), cf (5). I.e., (53)
is replaced by Fs(R,�) ≡ Fs(R) f (�) + 2π R sin(�)τ ,
where τ is the line tension. The resulting line tension is
found to be negative for H1 = 0 and its absolute magnitude
decreases when H1 increases towards H1w(T ). Of course, the
present data become more and more inaccurate for H close

to H1w(T ), due to the strong fluctuations associated with the
critical wetting transition, and finite size effects associated with
too small values chosen for L and D: hence, the analysis
of how the line tension behaves near critical wetting in the
Ising model is clearly beyond the scope of the present study.
One may ask the question to what extent the line tension itself
depends on the radius r = R sin � of the circle enclosing the
sphere cap at the substrate surface. To answer this question,
we have also estimated τ from g(m) in slab configurations with
m = 0 (figure 4). Within our statistical accuracy, no significant
dependence on r was found, however.

6. Conclusions

In this paper we have introduced a method to study the excess
free energy of sessile liquid droplets, attached to a flat wall
in the regime of incomplete wetting of the wall as it is
exposed to a saturated vapor. This method is based on a
study of the chemical potential as a function of density, for
finite L × L × D simulation boxes, where periodic boundary
conditions are used in x and y directions, while the wall at
z = D is chosen such that it prefers the vapor phase. It is
shown, by theoretical arguments which are verified by Monte
Carlo simulations, that in the finite-sized box there is for each
(sufficiently large) value of L a region of densities ρ where the
(stable) thermodynamic equilibrium between the sessile liquid
droplet and the surrounding vapor (which in comparison with
the saturated vapor under coexistence conditions in the bulk)
has a (slightly) enhanced density ρ ′ and that this equilibrium in
the finite systems can also be described by the lever rule. Since
the droplet and the surrounding vapor have the same chemical
potential (μ) as the corresponding bulk phases (ρ ′, ρ ′′), one
can obtain both the total particle number excess due to the
droplet and its volume from observations of these densities,
ρ, ρ ′ and ρ ′′. As the thermodynamic potential for all states
can be found by thermodynamic integration of the relation
μ(ρ) = (∂g(ρ, T )/∂ρ)T , the excess free energy of the droplet
results, without the need to identify which atoms belong to
the droplet in a particular configuration, and which belong to
the vapor. As is well known, such ‘cluster criteria’ to define
droplets from atomistic configurations suffer in principle from
some arbitrariness in their definition. While this problem
does not hamper simulations at low enough temperatures,
where impressive simulations of large sessile droplets have
been performed [101], near the vapor–liquid critical point such
studies of droplets based on neighborhood criteria between
atoms are hardly feasible.

We have demonstrated the feasibility of our approach for
the simplest possible model of a fluid in three dimensions, the
nearest-neighbor lattice gas model on the simple cubic lattice.
Varying a short range attractive potential due to the wall acting
on the particles (which in the Ising spin representation of the
lattice gas is nothing but a ‘surface magnetic field’ H1), the
contact angle � can easily be varied from � = 90◦ to 0◦
(choosing conditions where the wetting transition of the model
is second order). Exploiting the special symmetries of the
model, � can be found explicitly with very good accuracy.
For the mesoscopic droplet sizes studied, only rather rough
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Figure 11. (a) Plot of Fs(R, H1)/(kBT ) versus R for kBT/J = 3.0 and a broad range of values for H1. (b) Same as (a), but magnified region
from R = 4 to 16. Dotted lines are results from 30 × 30 × 30 systems, dashed lines from 40 × 40 × 40 systems, dashed–dotted line for a
60 × 60 × 20 system (H1/J = 0.5), and continuous line (H1/J = 0.6) for a 50 × 50 × 20 system. For the bulk system and for H1/J = 0.4
we also plotted the theoretical prediction (continuous) 4π R2γv�/(kBT ) and 4π R2γv�/(kBT ) f (�), respectively (b).

Figure 12. (a) Plot of Fs(R, �) as defined in (49), versus the droplet
radius R, for H1/J = 0 where � = π/2, at kBT/J = 3.0 for a
40 × 40 × 40 system. Crosses show the prediction of the theory that
Fs(R,� = π/2) = Fs(R)/2 in this case, while circles show the
actual data for wall-attached droplets, as found in figure 11. The third
line without symbols (also shown in the inset) is the difference
between the predicted (crosses) and observed results (circles).

estimates of � are possible from direct observation of the
droplets, as expected.

Since the surface excess free energy of the droplets
Fs(R,�) has been obtained for a wide range of � and values
for the droplet radius of curvature with very good accuracy,
the formula of Turnbull predicting the corresponding reduction
f (�) of the rate of heterogeneous nucleation �F∗

het at walls
in comparison with the rate of homogeneous nucleation,
�F∗

hom, could be tested, since f (�) = �F∗
het/�F∗

hom =
F(R,�)/Fs(R), where Fs(R) is the surface excess free energy
of spherical droplets in the bulk. We find that this relation is
reasonably accurate, apart from a correction due to the line
tension τ . The dependence of the line tensions as function
of H1/J has been estimated. In this way, the first systematic

Figure 13. Plot of τ/kBT versus H1/J for kBT/J = 3.0. Crosses
are data from 30 × 30 × 30 boxes, circles data from 40 × 40 × 40
boxes, while diamonds are data for 60 × 60 × 10 systems, and
squares data for 80 × 80 × 10 systems. (For the three rightmost
points, the theoretical prediction for Fs(R, bulk) was used.)

test of the classical theory of heterogeneous nucleation at flat
walls near wetting transitions could be performed. In view of
the subtle problem of separating contributions of contact lines
from the interface contributions, noted in [33], we note that we
associate a unit volume with each lattice site, and hence the
area of an interface running at � = π/2 across our system
(figure 3(b)) is defined as DL, although the geometric distance
between the planes n = 1 and n = D is D − 1 lattice spacings
only.

Having established this methodology for a very simple
lattice model, it will be desirable to consider extensions to
off-lattice models such as Lennard-Jones fluids, as well as to
consider the non-equilibrium dynamics of droplets, caused by
change of external conditions (e.g., temperature or pressure
quenching experiments). We hope to report on such extensions
in the future.
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[49] Quéré D 2008 Annu. Rev. Mater. Res. 38 71
[50] Biloni H 1983 Physical Metallurgy ed R W Cahn and

P Haasen (Amsterdam: North-Holland) p 477
[51] Bykov T V and Zeng X C 2002 J. Chem. Phys. 117 1851
[52] Talanquer V and Oxtoby D W 1996 J. Chem. Phys. 104 1483
[53] Talanquer V and Oxtoby D W 2001 J. Chem. Phys. 114 2793
[54] Ustinov E A and Do D D 2005 J. Phys. Chem. B 109 11653
[55] Bykov T V and Zeng X C 2006 J. Chem. Phys. 125 144515
[56] Sear R P 2005 J. Phys. Chem. B 110 4985
[57] Sear R P 2006 Phys. Rev. Lett. 97 065701
[58] Auer S and Frenkel D 2003 Phys. Rev. Lett. 91 015703
[59] Cacciuto A, Auer S and Frenkel D 2004 Nature 428 404
[60] Dijkstra M 2004 Phys. Rev. Lett. 93 108303
[61] Cacciuto A and Frenkel D 2005 Phys. Rev. E 72 041604
[62] Sear R P 2007 J. Phys.: Condens. Matter 19 033101
[63] Binder K and Müller-Krumbhaar H 1974 Phys. Rev. B 9 2194
[64] Furukawa H and Binder K 1982 Phys. Rev. A 26 556
[65] Stauffer D, Coniglio A and Heermann D W 1982 Phys. Rev.

Lett. 49 1299
[66] Shneidman V A, Jackson K A and Beatty K M 1999 J. Chem.

Phys. 111 6932
[67] Shneidman V A, Jackson K A and Beatty K M 1999 Phys.

Rev. B 30 3579
[68] Stauffer D 1999 Int. J. Mod. Phys. C 10 809
[69] Pan A C and Chandler D 2004 J. Phys. Chem. B 108 19681
[70] Maibaum L 2008 Phys. Rev. Lett. 101 256102
[71] Neuhaus T and Hager J S 2003 J. Stat. Phys. 113 47
[72] Baxter R J 1982 Exactly Solved Models in Statistical

Mechanics (London: Academic)
[73] Ferrenberg A M and Landau D P 1991 Phys. Rev. B 44 5081
[74] Hasenbusch M and Pinn K 1993 Physica A 192 343
[75] Hasenbusch M and Pinn K 1994 Physica A 203 189
[76] Binder K and Landau D P 1988 Phys. Rev. B 37 1745
[77] Binder K, Landau D P and Wansleben S 1989 Phys. Rev. B

40 6971
[78] Binder K, Landau D P and Ferrenberg A M 1995 Phys. Rev. E

51 2823
[79] Binder K, Evans R, Landau D P and Ferrenberg A M 1996

Phys. Rev. E 53 5023
[80] Schulz B J, Binder K and Müller M 2005 Phys. Rev. E

71 046705
[81] Landau D P and Binder K 2005 A Guide to Monte Carlo

Simulation in Statistical Physics 2nd edn (Cambridge:
Cambridge University Press)

[82] Binder K and Kalos M 1980 J. Stat. Phys. 22 363
[83] MacDowell L G, Virnau P, Müller M and Binder K 2004

J. Chem. Phys. 120 5293
[84] Virnau P, Müller M, MacDowell L G and Binder K 2004

New J. Phys. 6 7
[85] Biskup M, Chayes L and Kotecky R 2002 Europhys. Lett.

60 21
[86] Binder K 2003 Physica A 319 99
[87] Nussbaumer A, Bittner E, Neuhaus T and Janke W 2006

Europhys. Lett. 75 716
[88] Binder K and Landau D P 1992 Phys. Rev. B 46 4844
[89] Müller M and Binder K 1998 Macromolecules 31 8323
[90] Albano E V and Binder K 2009 J. Stat. Phys. at press
[91] Binder K and Hohenberg P C 1972 Phys. Rev. B 6 3461
[92] Binder K and Landau D P 1984 Phys. Rev. B 30 1477
[93] Borgs C and Kotecky R 1990 J. Stat. Phys. 61 79

14

http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1023/A:1022173600263
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1080/00018736600101264
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1016/0003-4916(69)90153-5
http://dx.doi.org/10.1080/00018737600101402
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1098/rstl.1805.0005
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1699435
http://dx.doi.org/10.1063/1.1747588
http://dx.doi.org/10.1063/1.433866
http://dx.doi.org/10.1142/S0217979294000129
http://dx.doi.org/10.1021/j100009a041
http://dx.doi.org/10.1016/0927-7757(96)03583-2
http://dx.doi.org/10.1016/S0378-4371(97)00618-3
http://dx.doi.org/10.1103/PhysRevE.57.655
http://dx.doi.org/10.1088/0953-8984/17/15/008
http://dx.doi.org/10.1063/1.2056548
http://dx.doi.org/10.1063/1.2799990
http://dx.doi.org/10.1063/1.1728081
http://dx.doi.org/10.1063/1.442309
http://dx.doi.org/10.1021/la980602k
http://dx.doi.org/10.1088/0305-4470/37/13/006
http://dx.doi.org/10.1103/PhysRevE.73.021602
http://dx.doi.org/10.1063/1.1362164
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1103/PhysRevLett.98.035702
http://dx.doi.org/10.1063/1.477658
http://dx.doi.org/10.1063/1.2186327
http://dx.doi.org/10.1016/0001-8686(79)87004-9
http://dx.doi.org/10.1016/j.crhy.2006.10.018
http://dx.doi.org/10.1021/la980602k
http://dx.doi.org/10.1146/annurev.matsci.38.060407.130231
http://dx.doi.org/10.1146/annurev.matsci.38.060407.132434
http://dx.doi.org/10.1063/1.1485733
http://dx.doi.org/10.1063/1.470914
http://dx.doi.org/10.1063/1.1339223
http://dx.doi.org/10.1021/jp050823g
http://dx.doi.org/10.1063/1.2357937
http://dx.doi.org/10.1021/jp056377e
http://dx.doi.org/10.1103/PhysRevLett.97.065701
http://dx.doi.org/10.1103/PhysRevLett.91.015703
http://dx.doi.org/10.1038/nature02397
http://dx.doi.org/10.1103/PhysRevLett.93.108303
http://dx.doi.org/10.1103/PhysRevE.72.041604
http://dx.doi.org/10.1088/0953-8984/19/3/033101
http://dx.doi.org/10.1103/PhysRevB.9.2194
http://dx.doi.org/10.1103/PhysRevA.26.556
http://dx.doi.org/10.1103/PhysRevLett.49.1299
http://dx.doi.org/10.1063/1.479985
http://dx.doi.org/10.1103/PhysRevB.59.3579
http://dx.doi.org/10.1142/S0129183199000620
http://dx.doi.org/10.1021/jp0471249
http://dx.doi.org/10.1103/PhysRevLett.101.256102
http://dx.doi.org/10.1023/A:1025718703965
http://dx.doi.org/10.1103/PhysRevB.44.5081
http://dx.doi.org/10.1016/0378-4371(93)90043-4
http://dx.doi.org/10.1016/0378-4371(94)90152-X
http://dx.doi.org/10.1103/PhysRevB.37.1745
http://dx.doi.org/10.1103/PhysRevB.40.6971
http://dx.doi.org/10.1103/PhysRevE.51.2823
http://dx.doi.org/10.1103/PhysRevE.53.5023
http://dx.doi.org/10.1103/PhysRevE.71.046705
http://dx.doi.org/10.1007/BF01014648
http://dx.doi.org/10.1063/1.1645784
http://dx.doi.org/10.1088/1367-2630/6/1/007
http://dx.doi.org/10.1209/epl/i2002-00312-y
http://dx.doi.org/10.1016/S0378-4371(02)01581-9
http://dx.doi.org/10.1209/epl/i2006-10190-9
http://dx.doi.org/10.1103/PhysRevB.46.4844
http://dx.doi.org/10.1021/ma980052x
http://dx.doi.org/10.1103/PhysRevB.6.3461
http://dx.doi.org/10.1103/PhysRevB.30.1477
http://dx.doi.org/10.1007/BF01013955


J. Phys.: Condens. Matter 21 (2009) 464118 D Winter et al

[94] Wang H, Gould H and Klein W 2007 Phys. Rev. E
76 031604

[95] Widom B 1963 J. Chem. Phys. 39 2808
[96] Widom B 1982 J. Phys. Chem. 86 869–72
[97] Winter D 2009 Diplomarbeit, Johannes

Gutenberg-Universität Mainz, unpublished

[98] Binder K 1976 Ann. Phys. 98 390
[99] Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 87

[100] Ivanov V A, Martemyanova J A, Müller M, Paul W and
Binder K 2009 J. Phys. Chem. B 113 3653

[101] Webb E B III, Grest G S and Hoyt J J 2005 Acta Mater.
53 3163

15

http://dx.doi.org/10.1103/PhysRevE.76.031604
http://dx.doi.org/10.1063/1.1734110
http://dx.doi.org/10.1021/j100395a005
http://dx.doi.org/10.1016/0003-4916(76)90159-7
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1021/jp806348y
http://dx.doi.org/10.1016/j.actamat.2005.03.021

	1. Introduction and overview
	2. Equilibrium of liquid droplets at walls in finite volumes
	2.1. Model and general phenomenological considerations
	2.2. The droplet evaporation--condensation transition

	3. Estimation of the contact angle in Ising models
	4. Estimation of the surface free energies of droplets in bulk vapor
	5. Monte Carlo results for the surface free energies of wall-attached droplets
	6. Conclusions
	Acknowledgments
	References

